首页> 外文OA文献 >Geometric sensitivity of random matrix results: consequences for shrinkage estimators of covariance and related statistical methods
【2h】

Geometric sensitivity of random matrix results: consequences for shrinkage estimators of covariance and related statistical methods

机译:随机矩阵结果的几何灵敏度:后果   协方差收缩估计和相关统计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shrinkage estimators of covariance are an important tool in modern appliedand theoretical statistics. They play a key role in regularized estimationproblems, such as ridge regression (aka Tykhonov regularization), regularizeddiscriminant analysis and a variety of optimization problems. In this paper, we bring to bear the tools of random matrix theory tounderstand their behavior, and in particular, that of quadratic forms involvinginverses of those estimators, which are important in practice. We use very mild assumptions compared to the usual assumptions made in randommatrix theory, requiring only mild conditions on the moments of linear andquadratic forms in our random vectors. In particular, we show that our resultsapply for instance to log-normal data, which are of interest in financialapplications. Our study highlights the relative sensitivity of random matrix results (andtheir practical consequences) to geometric assumptions which are oftenimplicitly made by random matrix theorists and may not be relevant in dataanalytic practice.
机译:协方差的收缩估计量是现代应用和理论统计中的重要工具。它们在诸如岭回归(aka Tykhonov正则化),正则化判别分析和各种优化问题等正则化估计问题中起着关键作用。在本文中,我们利用随机矩阵理论的工具来理解它们的行为,尤其是涉及那些估计量的逆的二次形式的工具,这在实践中很重要。与随机矩阵理论中的通常假设相比,我们使用非常温和的假设,仅要求随机向量中线性和二次形式的矩的温和条件。特别是,我们证明了我们的结果适用于例如对数正态数据,这在金融应用中非常有用。我们的研究强调了随机矩阵结果(及其实际后果)对几何假设的相对敏感性,这些假设通常是由随机矩阵理论家隐式做出的,可能与数据分析实践无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号